III Semester B.Sc. Examination, November/December 2018 (Repeaters) (CBCS/NS) (NS – 2012-2013 and Onwards) (Prior to 2017-18) PHYSICS – III Electricity and Magnetism

Time: 3 Hours

Max. Marks: 70

Instruction: Answer any five questions from each Part.

· PART - A

Answer any five questions. Each question carries eight marks.

(5×8=40)

- 1. a) What is an electric dipole?
 - b) Obtain an expression for electric potential at any point due to a short electric dipole. (2+6)
- 2. State and prove maximum power transfer theorem/

8

- 3. a) Assuming the expression for resultant magnetic field, derive an expression for the current through Helmholtz galvanometer.
 - b) What are eddy currents? How are they minimised?

(4+4)

- 4. a) State Faraday's laws of electromagnetic induction.
 - b) Derive an expression for magnetic field due to a long straight conductor carrying current. (2+6)
- 5. a) Derive an expression for the energy stored in an inductor.
 - b) State and explain coefficient of self induction.

(5+3)

6. Derive Maxwell's field equations

$$\vec{\nabla} \cdot \vec{B} = 0$$
 and $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

8

- 7. a) Derive an expression for current through an A.C. circuit containing capacitor and resistor.
 - b) Write a note on wattless current.

(6+2)

- 8. a) Define neutral temperature and inversion temperature.
 - b) What is Thomson effect? Describe an experiment to demonstrate Thomson effect. (2+6)

PART - B

Solve any five problems. Each problem carries four marks.

 $(5 \times 4 = 20)$

- 9. If two point charges +4 μc and -4 μc are placed at two corners of an equilateral triangle of side 0.3 m, find the magnitude and direction of their resultant at the third corner.
- 10. Using Thevenin's theorem, find the current through 2Ω for the circuit shown in the figure

- 11. The magnetic field due to a current carrying circular loop of radius 0.12 m at its centre is 0.5×10^{-4} T. Find the current through the coil. Given $\mu_0 = 4\pi \times 10^{-7}$ Hm⁻¹.
- 12. A coil with an average diameter of 0.02 m is placed perpendicular to a magnetic field of 6000 T. If the induced emf is 11V when the magnetic field is changed to 1000 T in 4S, what is the number of turns in the coil?
- 13. In an L-R circuit, the current attains $\left(\frac{1}{3}\right)$ of its final steady value in one second after the circuit is closed. What is the time constant of the circuit?
- 14. Electromagnetic waves travel in a medium at a speed of 2×10^8 ms⁻¹. The relative permeability of the medium is unity. Find the relative permittivity. Given $C = 3 \times 10^8$ ms⁻¹.
- 15. An ac voltage of 100 V is applied to a circuit consisting of an inductance of 10 mH, a capacitor of 1 μ F and a resistance of 10 Ω . Calculate the frequency at which the circuit will be in resonance with the current of the same frequency and find the value of current.
- 16. Calculate the thermo emf of silver-Iron thermocouple with junctions at 0°C and 80°C given a = 13.31 μ v/°C and b = -0.019 μ v/°C².

PART - Ç

17. Answer any five questions. Each question carries two marks.

 $(5 \times 2 = 10)$

- a) Is repulsion a sure test for electrification? Justify.
- b) Does the solenoid contract when a current is passed through it? Explain.
- c) Why two coils are used in Helmholtz galvanometer instead of single coil?
- d) A charge is kept near a magnet will it experience a force ? Explain.
- e) Does a current loop behaves as a magnetic dipole? Explain.
- f) Is the phase difference between the applied voltage and current in an LCR series ac circuit at resonance is zero? Explain.
- g) Is the average value of an ac is taken for one complete cycle? Explain.
- h) Is Peltier effect reversible? Explain.

BMSCW